We derive analytical rogue wave solutions of variable-coefficient higher-order nonlinear Schrödinger equations describing the femtosecond pulse propagation via a transformation connected with the constant-coefficient Hirota equation. Then we discuss the propagation behaviors of controllable rogue waves, including recurrence, annihilation, and sustainment in a periodic distributed fiber system and an exponential dispersion decreasing fiber. Finally, we investigate nonlinear tunneling effects for rogue waves.