Purpose of review: Heme biosynthesis requires a series of enzymatic reactions that take place in the cytosol and the mitochondria as well as the proper intercellular and intracellular trafficking of iron. Heme can also be acquired by intestinal absorption and intercellular transport. The purpose of this review is to highlight recent work on heme and iron transport with an emphasis on their relevance in erythropoiesis.
Recent findings: Whereas the enzymes responsible for heme biosynthesis have been identified, transport mechanisms for iron, heme, or heme synthesis intermediates are only emerging. Recent studies have shed light on how these molecules are transported among various cellular compartments, as well as tissues. Much of this progress can be attributed to the use of model organisms such as S. cerevisiae, C. elegans, D. rerio, and M. musculus. Genetic studies in these models have led to the identification of several new genes involved in heme metabolism. Although our understanding has greatly improved, it is highly likely that other regulators exist and additional work is required to characterize the pathways by which heme and iron are transported within the erythron.
Summary: The identification of heme and iron transport mechanisms will improve our understanding of blood development and provide new insight into human blood disorders.