A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced.