Amniotic fluid (AF) is created by the flow of fluid from the fetal lung and bladder and reabsorbed in part by fetal swallowing and partly by the transfer across the amnion to the fetal circulation. Placental water flux is an important factor in determining AF volume and fetal hydration. In addition the fetal membranes might be involved in the regulation of fluid composition. To understand the mechanisms responsible for maintaining a correct balance of AF volume we evaluated the expression of aquaporins (AQPs) in canine fetal adnexa. AQPs are a family of integral membrane proteins permitting passive but physiologically rapid transcellular water movement. The presence of AQP1, 3, 5, 8 and -9 was immunohistochemically assessed in canine fetal adnexa, collected in early, middle and late-gestation during ovario-hysterectomies performed with fully informed owners' consent. Changes in AF volume and biochemical composition were also evaluated throughout pregnancy. Our results show distinct aquaporin expression patterns in maternal and extraembryonic tissues in relation to pregnancy period. AQP1 was localized in placental endothelia, allantochorion, amnion, allantois and yolk sac. AQP3 was present in the placental labyrinth, amnion, allantois and yolk sac. AQP8 was especially evident on the epithelia lining the glandular chambers, the amniotic and allantois sacs. AQP9, a channel highly permeable to water and urea, was observed in epithelia of amnion, allantois and yolk sac. In summary, AQP1, 3, 5, 8 and -9 have distinct expression patterns in canine fetal membranes and placenta in relation to pregnancy period, suggesting an involvement in mediating the AF changes during gestation.
Copyright © 2012 Elsevier Ltd. All rights reserved.