Objective: Neochordae implantation is a well-established surgical solution for the treatment of mitral valve prolapse. The main limitation to wide usage of the technique has been the difficulty associated with accurate determination of neochordal length. We describe a system specifically designed to facilitate rapid, uncomplicated implantation and off-pump, beating heart adjustment of neochordae.
Methods: Five swine underwent implantation of the adjustable neochordal system (V-Chordal; Valtech Cardio LTD, Israel) while on cardiopulmonary bypass after cutting native chordae to create a significant lesion. Neochordae length was adjusted with millimeter-level resolution, off-pump after discontinuation from bypass.
Results: In all animals, the implant was successful. Under echocardiographic monitoring, flail lesions were corrected in all cases, using the anatomic landmarks or the degree of mitral regurgitation for real-time guidance. At postmortem gross examination, the implant and the neochordae were completely healed with evidence of tissue ingrowth.
Conclusions: Preliminary animal experience suggests that the V-Chordal-adjustable neochordae system can be safely and effectively implanted, with accurate and precise adjustment of chordal length. The design of the device is suitable for a minimally invasive environment because of the long, flexible shafted design of the delivery system.