The ability of packaging RNA (pRNA) from the phi29 DNA packaging motor to form nanoassemblies and nanostructures has been exploited for the development of the nascent field of RNA nanotechnology and subsequent applications in nanomedicine. For applications in nanomedicine, it is necessary to modify the pRNA structure for the conjugation of active molecules. We have investigated end-capped double-stranded DNA segments as reversible capture reagents for pRNA. These capture agents can be designed to allow the conjugation of any desired molecule for pRNA functionalization. The results of model studies presented in this report show that 5- to 7-nucleotide overhangs on a target RNA can provide efficient handles for the high-affinity association to capped double-stranded DNA.
© 2012 American Chemical Society