Recombinant expression, in vitro refolding, and biophysical characterization of the N-terminal domain of T1R3 taste receptor

Protein Expr Purif. 2012 May;83(1):75-83. doi: 10.1016/j.pep.2012.03.006. Epub 2012 Mar 17.

Abstract

The sweet taste receptor is a heterodimeric receptor composed of the T1R2 and T1R3 subunits, while T1R1 and T1R3 assemble to form the umami taste receptor. T1R receptors belong to the family of class C G-protein coupled receptors (GPCRs). In addition to a transmembrane heptahelical domain, class C GPCRs have a large extracellular N-terminal domain (NTD), which is the primary ligand-binding site. The T1R2 and T1R1 subunits have been shown to be responsible for ligand binding, via their NTDs. However, little is known about the contribution of T1R3-NTD to receptor functions. To enable biophysical characterization, we overexpressed the human NTD of T1R3 (hT1R3-NTD) using Escherichia coli in the form of inclusion bodies. Using a fractional factorial screen coupled to a functional assay, conditions were determined for the refolding of hT1R3-NTD. Far-UV circular dichroism spectroscopic studies revealed that hT1R3-NTD was well refolded. Using size-exclusion chromatography, we found that the refolded protein behaves as a dimer. Ligand binding quantified by tryptophan fluorescence quenching and microcalorimetry showed that hT1R3-NTD is functional and capable of binding sucralose with an affinity in the millimolar range. This study also provides a strategy to produce functional hT1R3-NTD by heterologous expression in E. coli; this is a prerequisite for structural determination and functional analysis of ligand-binding regions of other class C GPCRs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrophoresis, Polyacrylamide Gel
  • Escherichia coli / metabolism
  • Humans
  • Inclusion Bodies / chemistry
  • Protein Binding
  • Protein Conformation
  • Protein Refolding
  • Receptors, G-Protein-Coupled / biosynthesis*
  • Receptors, G-Protein-Coupled / chemistry*
  • Receptors, G-Protein-Coupled / metabolism
  • Recombinant Proteins / biosynthesis*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Sucrose / analogs & derivatives
  • Sucrose / metabolism

Substances

  • Receptors, G-Protein-Coupled
  • Recombinant Proteins
  • taste receptors, type 1
  • Sucrose
  • trichlorosucrose