The MMPs constitute a family of endopeptidases that can cleavage extracellular proteins. They are involved in a number of events; some of these include inflammatory processes. One of its targets is the TREM-1, which has emerged as an important modulator of innate immune responses in mammals. This transmembrane glycoprotein possesses an Ig-like ectodomain readily shed by MMPs to generate sTREM-1. Whereas membrane-anchored TREM-1 amplifies inflammatory responses, sTREM-1 exhibits anti-inflammatory properties. Here we show that sustained cell surface expression of TREM-1 in human monocytes, through metalloproteinase inhibition, counteracts the well-characterized down-regulation of several proinflammatory cytokines during the ET time-frame, also known as M2 or alternative activation. In addition to the cytokines profile, other features of the ET phenotype were underdeveloped when TREM-1 was stabilized at the cell surface. These events were mediated by the signal transducers PI3Ks and Syk. We also show that sTREM-1 counteracts the proinflammatory response obtained by membrane TREM-1 stabilization but failed to induce ET on naïve human monocytes. As the sustained TREM-1 expression at the cell surface suffices to block the progress of a refractory state in human monocytes, our data indicate that TREM-1 and MMPs orchestrate an "adaptive" form of innate immunity by modulating the human monocytes response to endotoxin.