Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):027301. doi: 10.1103/PhysRevE.85.027301. Epub 2012 Feb 7.

Abstract

We numerically investigate the structures of the near-plate temperature profiles close to the bottom and top plates of turbulent Rayleigh-Bénard flow in a cylindrical sample at Rayleigh numbers Ra = 10(8) to Ra = 2 × 10(12) and Prandtl numbers Pr = 6.4 and Pr = 0.7 with the dynamical frame method [Zhou and Xia, Phys. Rev. Lett. 104, 104301 (2010)], thus extending previous results for quasi-two-dimensional systems to three-dimensional systems. The dynamical frame method shows that the measured temperature profiles in the spatially and temporally local frame are much closer to the temperature profile of a laminar, zero-pressure gradient boundary layer (BL) according to Pohlhausen than in the fixed reference frame. The deviation between the measured profiles in the dynamical reference frame and the laminar profiles increases with decreasing Pr, where the thermal BL is more exposed to the bulk fluctuations due to the thinner kinetic BL, and increasing Ra, where more plumes are passing the measurement location.

Publication types

  • Research Support, Non-U.S. Gov't