We show that a variety of bulk metallic glasses (BMGs) inherit their Young's modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in situ neutron diffraction studies of an elastically deformed BMG, suggests a rubberlike viscoelastic behavior due to a hierarchy of atomic bonds in BMGs.