Background: Epidermal growth factor receptor (EGFR) is often overexpressed in non-small-cell lung cancer (NSCLC). Anti-EGFR agents, including EGFR-tyrosine kinase inhibitors are considered to be effective when a drug-sensitive EGFR mutation is present. However, inherent and acquired resistances are major problems of EGFR-targeting therapies. In this study, we performed EGFR knockdown by using small interfering RNAs in NSCLC cell lines to examine the significance of targeting EGFR for NSCLC therapy.
Methods: We treated 13 NSCLC cell lines, including 8 EGFR mutant and 5 EGFR wild type by using gefitinib or small interfering RNAs against EGFR (siEGFR). Three cell lines (PC-9-GR1, RPC-9, and HCC827-ER) were experimentally established with acquired resistance to EGFR-tyrosine kinase inhibitors. The antitumor effect was determined by using an 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt (MTS) or colony formation assay. The protein expression was evaluated by using Western blotting.
Results: All 13 cell lines expressed EGFR protein, and siEGFR downregulated EGFR protein expression in all. The cell viability was suppressed by siEGFR in 6 of 8 EGFR-mutant cell lines (suppressed 57%-92% of control cells), including PC-9-GR1 and RPC-9. The NCI-H1650 and HCC827-ER harbored EGFR mutations but were not suppressed. Of note, PTEN (phosphatase and tensin homolog) was deleted in NCI-H1650, and c-MET was amplified in HCC827-ER. It was not suppressed in any of the EGFR wild-type cells except in the NCI-H411, in which EGFR is phosphorylated, which indicates its activation.
Conclusions: Analysis of the results indicated that EGFR can be a therapeutic target in NSCLCs with EGFR activation. In contrast, targeting EGFR is not appropriate for tumors in which EGFR is not activated, even if EGFR is expressed.
Copyright © 2012 Elsevier Inc. All rights reserved.