Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams

Phys Med Biol. 2012 May 7;57(9):2819-27. doi: 10.1088/0031-9155/57/9/2819.

Abstract

Recently, there has been an increased interest in flattening-filter-free (FFF) linear accelerators. Removal of the filter results in available dose rates up to 24 Gy min(-1) (for nominal energy 10 MV in depth of maximum dose, a source-surface distance of 100 cm and a field size of 10×10 cm2). To guarantee accurate relative and reference dosimetry for the FFF beams, we investigated the charge collection efficiency of multiple air-vented and one liquid ionization chamber for dose rates up to 31.9 Gy min(-1). For flattened beams, the ion-collection efficiency of all air-vented ionization chambers (except for the PinPoint chamber) was above 0.995. By removing the flattening filter, we found a reduction in collection efficiency of approximately 0.5-0.9% for a 10 MV beam. For FFF beams, the Markus chamber showed the largest collection efficiency of 0.994. The observed collection efficiencies were dependent on dose per pulse, but independent of the pulse repetition frequency. Using the liquid ionization chamber, the ion-collection efficiency for flattened beams was above 0.990 for all dose rates. However, this chamber showed a low collection efficiency of 0.940 for the FFF 10 MV beam at a dose rate of 31.9 Gy min(-1). All investigated air-vented ionization chambers can be reliably used for relative dosimetry of FFF beams. The order of correction for reference dosimetry is given in the manuscript. Due to their increased saturation in high dose rate FFF beams, liquid ionization chambers appear to be unsuitable for dosimetry within these contexts.

MeSH terms

  • Photons*
  • Radiation Dosage*
  • Radiometry / instrumentation*