RasGRP4 (Ras guanine nucleotide-releasing protein-4) is an intracellular, calcium-regulated guanine nucleotide exchange factor and diacylglycerol/phorbol ester receptor expressed in mast cells (MCs) and their progenitors. To study the function of this signaling protein in inflammatory disorders, a homologous recombination approach was used to create a RasGRP4-null C57BL/6 mouse line. The resulting transgenic animals had normal numbers of MCs in their tissues that histochemically and morphologically resembled those in WT C57BL/6 mice. MCs could also be generated from RasGRP4-null mice by culturing their bone marrow cells in IL-3-enriched conditioned medium. Despite these data, the levels of the transcripts that encode the proinflammatory cytokines IL-1β and TNF-α were reduced in phorbol 12-myristate 13-acetate-treated MCs developed from RasGRP4-null mice. Although inflammation was not diminished in a Dermatophagoides farinae-dependent model of allergic airway disease, dextran sodium sulfate-induced colitis was significantly reduced in RasGRP4-null mice relative to similarly treated WT mice. Furthermore, experimental arthritis could not be induced in RasGRP4-null mice that had received K/BxN mouse serum. The latter findings raise the possibility that the pharmacologic inactivation of this intracellular signaling protein might be an effective treatment for arthritis or inflammatory bowel disease.