Cholecystokinin (CCK-) positive basket cells form a distinct class of inhibitory GABAergic interneurons, proposed to act as fine-tuning devices of hippocampal gamma-frequency (30-90 Hz) oscillations, which can convert into higher frequency seizure activity. Therefore, CCK-basket cells may play an important role in regulation of hyper-excitability and seizures in the hippocampus. In normal conditions, the endogenous excitability regulator neuropeptide Y (NPY) has been shown to modulate afferent inputs onto dentate gyrus CCK-basket cells, providing a possible novel mechanism for excitability control in the hippocampus. Using GAD65-GFP mice for CCK-basket cell identification, and whole-cell patch-clamp recordings, we explored whether the effect of NPY on afferent synapses to CCK-basket cells is modified in the hyper-excitable dentate gyrus. To induce a hyper-excitable state, recurrent seizures were evoked by electrical stimulation of the hippocampus using the well-characterized rapid kindling protocol. The frequency of spontaneous and miniature excitatory and inhibitory post-synaptic currents recorded in CCK-basket cells was decreased by NPY. The excitatory post-synaptic currents evoked in CCK-basket cells by optogenetic activation of principal neurons were also decreased in amplitude. Interestingly, we observed an increased proportion of spontaneous inhibitory post-synaptic currents with slower rise times, indicating that NPY may inhibit gamma aminobutyric acid release preferentially in peri-somatic synapses. These findings indicate that increased levels and release of NPY observed after seizures can modulate afferent inputs to CCK-basket cells, and therefore alter their impact on the oscillatory network activity and excitability in the hippocampus.
© 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.