S-Nitrosation plays an important role in regulation of protein function and signal transduction. Discovering S-nitrosated targets is a prerequisite for further functional study. However, current proteomic methods used to quantify S-nitrosation are limited in their applicability to certain types of samples, or by the need for special reagents and complex procedures to obtain the results. Here we devised a label-free proteomic method for quantification of changes in the level of protein S-nitrosation on the basis of a spectral counting strategy, called S-nitrosothiol (SNO) spectral counting (SNOSC). With this method, samples can be from any source (cells, tissues); there is no need for labelling reagents or procedures, and the results yield quantitative information. Moreover, as it is based on the irreversible biotinylation procedure (IBP) for S-nitrosation protein enrichment, false positive targets caused by the interference of intermolecular disulphide bonds are ruled out. Using SNOSC we studied S-nitrosation in the cell line RAW264.7 induced exogenously with S-nitrosoglutathione (GSNO), or induced endogenously by lipopolysaccharides/interferon-gamma (LPS/IFN-γ). We detected a significant increase in S-nitrosation of 50 proteins after exogenous induction and 17 proteins after endogenous induction. We thus demonstrate that SNOSC is a widely applicable proteomic method for fast screening of SNO proteins.