Effect of soccer footwear on landing mechanics

Scand J Med Sci Sports. 2014 Feb;24(1):129-35. doi: 10.1111/j.1600-0838.2012.01468.x. Epub 2012 Apr 20.

Abstract

Lower-extremity injury is common in soccer. A number of studies have begun to assess why specific lower-extremity injuries occur. However, currently few studies have examined how footwear affects lower-extremity mechanics. In order to address this question, 14 male (age: 22.1 ± 3.9 years, height: 1.77 ± 0.06 m, and mass: 73.3 ± 11.5 kg) and 14 female (age: 22.8 ± 3.1 years, height: 1.68 ± 0.07 m and mass: 64.4 ± 9.2 kg) competitive soccer players underwent a motion analysis assessment while performing a jump heading task. Each subject performed the task in three different footwear conditions (running shoe, bladed cleat, and turf shoe). Two-way analyses of variance were used to examine statistical differences in landing mechanics between the footwear conditions while controlling for gender differences. These comparisons were made during two different parts (prior to and following) of a soccer-specific jump heading task. A statistically significant interaction for the peak dorsiflexion angle (P = 0.02) and peak knee flexion angle (P = 0.05) was observed. Male soccer players exhibited a degree increase in dorsiflexion in the bladed cleat while female soccer players exhibited a three-degree reduction in peak knee flexion in the bladed cleat condition. Other main effects for gender and footwear were also observed. The results suggest that landing mechanics differ based upon gender, footwear, and the type of landing. Therefore, training interventions aimed at reducing lower-extremity injury should consider utilizing sport-specific footwear when assessing movement patterns.

Keywords: artificial turf; biomechanics; football; gender; injury prevention.

MeSH terms

  • Adolescent
  • Adult
  • Ankle Injuries / prevention & control
  • Ankle Joint / physiology*
  • Biomechanical Phenomena
  • Female
  • Hip Joint / physiology*
  • Humans
  • Knee Injuries / prevention & control
  • Knee Joint / physiology*
  • Male
  • Sex Factors
  • Shoes*
  • Soccer / physiology*
  • Young Adult