A key feature of Alzheimer disease (AD) is the pathologic self-association of the amyloid-β (Aβ) peptide, leading to the formation of diffusible toxic Aβ oligomers and extracellular amyloid plaques. Next to extracellular Aβ, intraneuronal Aβ has important pathological functions in AD. Agents that specifically interfere with the oligomerization processes either outside or inside of neurons are highly desired for the elucidation of the pathologic mechanisms of AD and might even pave the way for new AD gene therapeutic approaches. Here, we characterize the Aβ binding peptide L3 and its influence on Aβ oligomerization in vitro. Preliminary studies in cell culture demonstrate that stably expressed L3 reduces cell toxicity of externally added Aβ in neuroblastoma cells.