Rhodococcus sp. and Pseudomonas sp. bioremediation experiments were carried out using free and immobilized cells on natural carrier material (corncob powder) in order to evaluate the feasibility of its use in the bioremediation of hydrocarbon-contaminated soils. Terminal restriction fragment length polymorphism analysis was performed on the 16S rRNA gene as molecular fingerprinting method in order to assess the persistence of inoculated strains in the soil over time. Immobilized Pseudomonas cells degraded hydrocarbons more efficiently in the short term compared to the free ones. Immobilization seemed also to increase cell growth and stability in the soil. Free and immobilized Rhodococcus cells showed comparable degradation percentages, probably due to the peculiarity of Rhodococcus cells to aggregate into irregular clusters in the presence of hydrocarbons as sole carbon source. It is likely that the cells were not properly adsorbed on the porous matrix as a result of the small size of its pores. When Rhodococcus and Pseudomonas cells were co-immobilized on the matrix, a competition established between the two strains, that probably ended in the exclusion of Pseudomonas cells from the pores. The organic matrix might act as protective agent, but it also possibly limited cell density. Nevertheless, when the cells were properly adsorbed on the porous matrix, the immobilization became a suitable bioremediation strategy.