We investigated the nonlinear fiber phenomena of pulse trapping and amplification between incoherent light and an ultrashort soliton pulse in birefringent fibers both experimentally and numerically. Using the phenomena in a 1.4 km-long low-birefringence fiber, a coherent, nearly transform-limited, sech2-shaped, ultrashort pulse was generated from incoherent light from a super-luminescent diode. The average pulse energy and pulse width were 121 pJ and 640 fs, respectively. The estimated gain of this system was as large as 62 dB.