Our recent study has indicated that Chinese green tea (Lung Chen), in which epigallocatechin-3-gallate (EGCG) accounts for 60% of catechins, protected cigarette smoke-induced lung injury. We now hypothesized that Lung Chen tea may also have potential effect on lung oxidative stress and proteases/anti-proteases in a smoking rat model. Sprague-Dawley rats were exposed to either sham air (SA) or 4% cigarette smoke (CS) plus 2% Lung Chen tea or water by oral gavage. Serine proteases, matrix metalloproteinases (MMPs) and their respective endogenous inhibitors were determined in bronchoalveolar lavage (BAL) and lung tissues by gelatin/casein zymography and biochemical assays. Green tea consumption significantly decreased CS-induced elevation of lung lipid peroxidation marker, malondialdehyde (MDA), and CS-induced up-regulation of neutrophil elastase (NE) concentration and activity along with that of α(1)-antitrypsin (α(1)-AT) and secretory leukoproteinase inhibitor (SLPI) in BAL and lung. In parallel, significant elevation of MMP-12 activity was found in BAL and lung of the CS-exposed group, which returned to the levels of SA-exposed group after green tea consumption but not CS-induced reduction of tissue inhibitor of metalloproteinase (TIMP)-1 activity, which was not reversed by green tea consumption. Taken together, our data supported the presence of local oxidative stress and protease/anti-protease imbalance in the airways after CS exposure, which might be alleviated by green tea consumption through its biological antioxidant activity.