A decrease in the expression of Islet-1 (Isl-1), an islet transcription factor, has been reported in several physiological settings of reduced β-cell function. Here, we investigate whether an increased level of Isl-1 in islet cells can enhance β-cell function and/or mass. We demonstrate that transgenic mice with Isl-1 overexpression display improved glucose tolerance and enhanced insulin secretion without significant changes in β cell mass. From our microarray study, we identify approximately 135 differentially expressed genes in the islets of Isl-1 overexpressing mice that have been implicated to function in numerous biological processes including protein trafficking, metabolism and differentiation. Using real-time PCR we have confirmed upregulation of Caps2, Sec14l4, Slc2a10, P2rx7, Afamin, and Neurogenin 3 that may in part mediate the observed improved insulin secretion in Isl-1 overexpressing mice. These findings show for the first time that Isl-1 is a key factor in regulating adult β cell function in vivo, and suggest that Isl-1 elevation could be beneficial to improve glucose homeostasis.