The Retinol-Binding Protein (RBP) is expressed primarily in the liver. The regulatory elements involved in its tissue-specific expression have been identified and mapped to the 5' flanking region of the RBP gene. In this paper heterokaryons and somatic cell-hybrids have been produced and analysed in order to demonstrate that the RBP gene is subject to extinction and to identify the target sequences of this phenomenon. We show here that the gene is extinguished in fusions of hepatoma with a variety of cells of different species and embryonic lineages. The repression is not due to loss of the gene and occurs also when chromosome 10, where the gene is located, is inherited from the expressing parental cell-type. Hybrid clones were transfected with constructs carrying DNA segments of different lengths from the 5' flanking region of the RBP gene fused to a reporter gene. We demonstrate that extinction takes place also on an exogenous RBP-CAT gene, mimicking the phenomenon observed with the endogenous gene in its chromosomal location. Moreover, we identify and map the target sequences of the putative extinguishing function. Our data thus show that extinction of RBP is mediated through the DNA segment that is involved in its tissue-specific expression.