Aim: The objective of this study was to determine the extent to which the CYP2C8*3 allele influences pharmacokinetic variability in the drug-drug interaction between gemfibrozil (CYP2C8 inhibitor) and pioglitazone (CYP2C8 substrate).
Methods: In this randomized, two phase crossover study, 30 healthy Caucasian subjects were enrolled based on CYP2C8*3 genotype (n = 15, CYP2C8*1/*1; n = 15, CYP2C8*3 carriers). Subjects received a single 15 mg dose of pioglitazone or gemfibrozil 600 mg every 12 h for 4 days with a single 15 mg dose of pioglitazone administered on the morning of day 3. A 48 h pharmacokinetic study followed each pioglitazone dose and the study phases were separated by a 14 day washout period.
Results: Gemfibrozil significantly increased mean pioglitazone AUC(0,∞) by 4.3-fold (P < 0.001) and there was interindividual variability in the magnitude of this interaction (range, 1.8- to 12.1-fold). When pioglitazone was administered alone, the mean AUC(0,∞) was 29.7% lower (P = 0.01) in CYP2C8*3 carriers compared with CYP2C8*1 homozygotes. The relative change in pioglitazone plasma exposure following gemfibrozil administration was significantly influenced by CYP2C8 genotype. Specifically, CYP2C8*3 carriers had a 5.2-fold mean increase in pioglitazone AUC(0,∞) compared with a 3.3-fold mean increase in CYP2C8*1 homozygotes (P = 0.02).
Conclusion: CYP2C8*3 is associated with decreased pioglitazone plasma exposure in vivo and significantly influences the pharmacokinetic magnitude of the gemfibrozil-pioglitazone drug-drug interaction. Additional studies are needed to evaluate the impact of CYP2C8 genetics on the pharmacokinetics of other CYP2C8-mediated drug-drug interactions.
© 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.