Targeted In Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein

Cardiol Res Pract. 2012:2012:148796. doi: 10.1155/2012/148796. Epub 2012 May 7.

Abstract

Cardiovascular disease is the leading worldwide cause of death. Apolipoprotein E (ApoE) is a 34-kDa circulating glycoprotein, secreted by the liver and macrophages with pleiotropic antiatherogenic functions and hence a candidate to treat hypercholesterolaemia and atherosclerosis. Here, we describe atheroprotective properties of ApoE, though also potential proatherogenic actions, and the prevalence of dysfunctional isoforms, outline conventional gene transfer strategies, and then focus on gene correction therapeutics that can repair defective APOE alleles. In particular, we discuss the possibility and potential benefit of applying in combination two technical advances to repair aberrant APOE genes: (i) an engineered endonuclease to introduce a double-strand break (DSB) in exon 4, which contains the common, but dysfunctional, ε2 and ε4 alleles; (ii) an efficient and selectable template for homologous recombination (HR) repair, namely, an adeno-associated viral (AAV) vector, which harbours wild-type APOE sequence. This technology is applicable ex vivo, for example to target haematopoietic or induced pluripotent stem cells, and also for in vivo hepatic gene targeting. It is to be hoped that such emerging technology will eventually translate to patient therapy to reduce CVD risk.