Ninety-six crossbred yearling steers (321 ± 29 kg BW) were used to determine the effects of feeding cattle a high S diet on pasture before receiving a high S diet in the feedlot. Steers were blocked by BW, allocated to 2.4-ha bromegrass (Bromus inermis L.) pastures (n = 4 plots per treatment), and supplemented at 1% BW with either low S dried distillers grains with solubles (DDGS; 0.34% total diet S; LS) or LS DDGS with additional S (0.47% total diet S; HS) from NaSO(4) for 36 d. On d 37, steers moved into the feedlot where one-half remained on the previous S treatment and the other half switched treatments, resulting in 4 treatments (LS-LS, LS-HS, HS-LS, HS-HS; LS: 0.2 to 0.3% total diet S, HS: 0.5 to 0.6% total diet S; n = 6 feedlot pens per treatment). During the pasture period, forage mass offered, grazing residual mass, and in vitro digestible DM of forage did not differ among treatments (P > 0.40), and ADG did not differ (LS: 1.6 kg · d(-1), HS: 1.7 kg · d(-1), P = 0.54). Plasma Mg measured on d 35 was decreased by ≈ 5% in response to increased dietary S during the pasture period (P = 0.05), though no effect on plasma Mg was observed during finishing (P > 0.15). Plasma Cu concentrations on d 155 were ≈ 15% less (P = 0.02) in HS vs. LS steers, and d 155 liver Cu concentrations were ≈ 51% less in HS vs. LS steers (P = 0.01). Increased dietary S during the feedlot period decreased ADG by ≈ 10% (P = 0.01) and tended to decrease HCW by ≈ 5% (P = 0.06) compared with LS steers. Steers receiving the HS diet had increased stearic acid (C18:0) and heptadecanoic acid (C17:0; P = 0.04 and 0.01, respectively) percentages in rib facings collected at slaughter. Exposing cattle to greater S diets (0.47% S) during a forage-based diet did not influence later performance on high S feedlot diets (0.5 to 0.6% S); however, cattle fed high dietary S on pasture had greater fat cover at slaughter (P = 0.01), suggesting S may have influenced lipid metabolism.