TFD: Torsion Fingerprints as a new measure to compare small molecule conformations

J Chem Inf Model. 2012 Jun 25;52(6):1499-512. doi: 10.1021/ci2002318. Epub 2012 Jun 6.

Abstract

Advantages like intuitive interpretation, objectivity, general applicability, and its easy, automated calculation make the rmsd (root-mean-squared deviation) the measure of choice for the investigation of the accuracy of conformational model generators. For comparing conformations of a single molecule this is a clearly superior method. Single molecule analysis is, however, a rare scenario. Typically, conformations are generated for huge corporate or external vendor databases of high diversity which are then further investigated with high-throughput computational methods like docking or pharmacophore searching, in virtual screening campaigns. Representative subsets for accuracy investigations of computational methods need to mimic this diversity. Averaged rmsd values over these data sets are frequently used to assess the accuracy of the methods. There are, however, significant weaknesses in rmsd comparisons for such kind of data sets. The interpretation is for example no longer intuitive because what can be expected in terms of good or bad rmsd values crucially depends on the data set composition like size or number of rotatable bonds of the underlying molecules. Further, rmsd lacks normalization which might result in very high averaged rmsd values for highly flexible molecules and thus might completely skew results. We have developed a novel measure to compare conformations of molecules called Torsion Fingerprint Deviation (TFD). It extracts, weights, and compares Torsion Fingerprints from a query molecule and generated conformations under consideration of acyclic bonds as well as ring systems. TFD is alignment-free and overcomes major limitations of rmsd while retaining its advantages.

MeSH terms

  • Databases, Factual
  • Models, Molecular
  • Molecular Conformation*