Cardiac remodeling is a deleterious consequence of arterial hypertension. This remodeling results in cardiac transcriptomic changes induced by mechanical and hormonal factors (angiotensin II and aldosterone are the most important). The major features of cardiac remodeling are the hypertrophy of cardiomyocytes, interstitial and perivascular fibrosis, and microvascular rarefaction. Inappropriate stimulation of the renin-angiotensin-aldosterone system (RAAS) participates to the development of heart failure. The respective roles of angiotensin II and aldosterone in cardiac remodeling are poorly understood. The development of fibrosis in the heart depends of a balance between profibrotic (TGFβ, CTGF, inflammation) and antifibrotic (BNP, ANP, BMP4 and BMP7) factors. The profibrotic and proinflammatory effects of angiotensin II and aldosterone are very well demonstrated; however, their actions on antifibrotic factors expression are unknown. In order to explore this, we used RenTgKC mice overexpressing renin into the liver, leading to an increased plasma angiotensin II and thus induction of severe hypertension, and AS mice overexpressing aldosterone synthase (AS) in cardiomyocytes which have a doubled intracardiac aldosterone concentration. Male AS mice have a dysfunction of the coronary arteries relaxation without structural and functional changes of the myocardium. Mice derived from a crossing between the RenTgKC and AS strains were used in this work. It is shown that angiotensin II induces the expression of BNP and BMPs which ultimately slows the progression of myocardial fibrosis, and that aldosterone inhibits the expression of these factors and thus worsens the fibrosis.
Copyright © 2012 Elsevier Masson SAS. All rights reserved.