Protease inhibitors from the host may inhibit proteases from invading pathogens and confer resistance. We have previously shown that a single-nucleotide polymorphism (SNP198C) in a serine protease inhibitor gene (cvSI-1) is associated with Perkinsus marinus resistance in the eastern oyster. As SNP198 is synonymous, we studied whether its linkage to polymorphism at the promoter region could explain the resistance. A 631 bp fragment of the promoter region was cloned by genome-walking and resequenced, revealing 22 SNPs and 3 insertion/deletions (indels). A 25 bp indel at position -404 was genotyped along with SNP198 for association analysis using before- and after-mortality samples. After mortalities that were primarily caused by P. marinus, the frequency of deletion allele at -404indel increased by 15.6% (p = 0.0437), while that of SNP198C increased by only 3.4% (p = 0.5756). The resistance alleles at the two loci were coupled in 79.6% of the oysters. Oysters with the deletion allele at -404indel showed significant (p = 0.0189) up-regulation of cvSI-1 expression under P. marinus challenge. Our results suggest that mutation at the promoter region causes increased transcription of cvSI-1, which in turn confers P. marinus resistance in the eastern oyster likely through inhibiting pathogenic proteases from the parasite.
Copyright © 2012 Elsevier Ltd. All rights reserved.