Context: Despite widespread screening for prostate cancer (PCa) and major advances in the treatment of metastatic disease, PCa remains the second most common cause of cancer death for men in the Western world. In addition, the use of prostate-specific antigen testing has led to the diagnosis of many potentially indolent cancers, and aggressive treatment of these cancers has caused significant morbidity without clinical benefit in many cases. The recent discoveries of inherited and acquired genetic markers associated with PCa initiation and progression provide an opportunity to apply these findings to guide clinical decision making.
Objective: In this review, we discuss the potential use of genetic markers to better define groups of men at high risk of developing PCa, to improve screening techniques, to discriminate indolent versus aggressive disease, and to improve therapeutic strategies in patients with advanced disease.
Evidence acquisition: PubMed-based literature searches and abstracts through January 2012 provided the basis for this literature review. We also examined secondary sources from reference lists of retrieved articles and data presented at recent congresses. Cited review articles are only from the years 2007-2012, favoring more recent discussions because of the rapidly changing field. Original research articles were curated based on favoring large sample sizes, independent validation, frequent citations, and basic science directly related to potentially clinically relevant prognostic or predictive markers. In addition, all authors on the manuscript evaluated and interpreted the data acquired.
Evidence synthesis: We address the use of inherited genetic variants to assess risk of PCa development, risk of advanced disease, and duration of response to hormonal therapies. The potential for using urine measurements such as prostate cancer antigen 3 (PCA3) RNA and the transmembrane protease, serine 2 v-ets erythroblastosis virus E26 oncogene homolog (avian) (TMPRSS2-ERG) gene fusion to aid screening is discussed. Multiple groups have developed gene expression signatures from primary prostate tumors correlating with poor prognosis, and attempts to improve and standardize these signatures as diagnostic tests are presented. Massive sequencing efforts are underway to define important somatic genetic alterations (amplifications, deletions, point mutations, translocations) in PCa, and these alterations hold great promise as prognostic markers and for predicting response to therapy. We provide a rationale for assessing genetic markers in metastatic disease for guiding choice of therapy and for stratifying patients in clinical trials, and discuss challenges in clinical trial design incorporating the use of these markers.
Conclusions: The use of genetic markers has the potential to aid disease screening, improve prognostic discrimination, and prediction of response to treatment. However, most markers have not been prospectively validated for providing useful prognostic or predictive information or improvement upon clinicopathologic parameters already in use. Significant efforts are underway to develop these research findings into clinically useful diagnostic tests in order to improve clinical decision making.
Copyright © 2012. Published by Elsevier B.V.