Structural, spectroscopic, and electrochemical properties of tri- and tetradentate N3 and N3S copper complexes with mixed benzimidazole/thioether donors

Dalton Trans. 2012 Aug 21;41(31):9394-404. doi: 10.1039/c2dt30756a. Epub 2012 Jun 27.

Abstract

Cupric and cuprous complexes of bis(2-methylbenzimidazolyl)(2-methylthiophene)amine (L(1)), bis(2-methylbenzimidazolyl)benzylamine (L(2)), bis(2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (L(3)), bis(1-methyl-2-methylbenzimidazolyl)benzylamine (Me(2)L(2)), and bis(1-methyl-2-methylbenzimidazolyl)(2,4-dimethylphenylthioethyl)amine (Me(2)L(3)) have been spectroscopically, structurally, and electrochemically characterised. The thioether-containing ligands L(3) and Me(2)L(3) give rise to complexes with Cu-S bonds in solution and in the solid state, as evidenced by UV-vis spectroscopy and X-ray crystallography. The Cu(2+) complexes [L(1)CuCl(2)] (1), [L(2)CuCl(2)] (2) and [Me(2)L(3)CuCl]ClO(4) (3(Me,ClO4)) are monomeric in solution according to ESI mass spectrometry data, as well as in the solid state. Their Cu(+) analogues [L(1)Cu]ClO(4), [L(2)Cu]ClO(4), [L(3)Cu]ClO(4) (4-6), [BOC(2)L(1)Cu(NCCH(3))]ClO(4) (4(BOC)), [Me(2)L(2)Cu(NCCH(3))(2)]PF(6) (5(Me)) and [Me(2)L(3)Cu](2)(ClO(4))(2) (6(Me)) are also monomeric in acetonitrile solution, as confirmed crystallographically for 4(BOC) and 5(Me). In contrast, 6(Me) is dimeric in the solid state, with the thioether group of one of the ligands bound to a symmetry-related Cu(+) ion. Cyclic voltammetry studies revealed that the bis(2-methylbenzimidazolyl)amine-Cu(2+)/Cu(+) systems possess half-wave potentials in the range -0.16 to -0.08 V (referenced to the ferrocenium-ferrocene couple); these values are nearly 0.23 V less negative than those reported for related bis(picolyl)amine-derived ligands. Based on these observations, the N(3) or N(3)S donor set of the benzimidazole-derived ligands is analogous to previously reported chelating systems, but the electronic environment they provide is unique, and may have relevance to histidine and methionine-containing metalloenzymes. This is also reflected in the reactivity of [Me(2)L(2)Cu(NCCH(3))(2)](+) (5(Me)) and [Me(2)L(3)Cu](+) (6(Me)) towards dioxygen, which results in the production of the superoxide anion in both cases. The thioether-bound Cu(+) centre in 6(Me) appears to be more selective in the generation of O(2)˙(-) than 5(Me), lending evidence to the hypothesis of the modulating properties of thioether ligands in Cu-O(2) reactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzimidazoles / chemistry
  • Coordination Complexes / chemistry*
  • Copper / chemistry*
  • Crystallography, X-Ray
  • Electrochemistry
  • Molecular Structure
  • Spectrometry, Mass, Electrospray Ionization
  • Sulfides / chemistry
  • X-Ray Diffraction

Substances

  • Benzimidazoles
  • Coordination Complexes
  • Sulfides
  • Copper