We investigated whether residual material from diagnostic smears of fine needle aspirations (FNAs) of mammographically detected breast lesions can be successfully used to extract RNA for reliable gene expression analysis. Twenty-eight patients underwent FNA of breast lesions under ultrasonographic guidance. After smearing slides for cytology, residual cells were rinsed with TRIzol to recover RNA. RNA yield ranged from 0.78 to 88.40 µg per sample. FNA leftovers from 23 nonpalpable breast cancers were selected for gene expression profiling using oligonucleotide microarrays. Clusters generated by global expression profiles partitioned samples in well-distinguished subgroups that overlapped with clusters obtained using "biologic scores" (cytohistologic variables) and differed from clusters based on "technical scores" (RNA/complementary RNA/microarray quality). Microarray profiling used to measure the grade of differentiation and estrogen receptor and ERBB2/HER2 status reflected the results obtained by histology and immunohistochemistry. Given that proliferative status in the FNA material is not always assessable, we designed and performed on FNA leftover a multiprobe genomic signature for proliferation genes that strongly correlated with the Ki67 index examined on histologic material. These findings show that cells residual to cytologic smears of FNA are suitable for obtaining high-quality RNA for high-throughput analysis even when taken from small nonpalpable breast lesions.