Aims: Mitochondrial ferritin (MtFt), which was recently discovered, plays an important role in preventing neuronal damage in 6-hydroxydopamine-induced Parkinsonism by maintaining mitochondrial iron homeostasis. Disruption of iron regulation also plays a key role in the etiology of Alzheimer's disease (AD). To explore the potential neuroprotective roles of MtFt, rats and cells were treated with Aβ(25-35) to establish an AD model.
Results: We report that knockdown of MtFt expression significantly enhanced Aβ(25-35)-induced neurotoxicity as shown by dysregulation of iron homeostasis, enhanced oxidative stress, and increased cell apoptosis. Opposite results were obtained when MtFt was overexpressed in SH-SY5Y cells prior to treatment with Aβ(25-35). Further, MtFt inhibited Aβ(25-35)-induced P38 mitogen-activated protein kinase and activated extracellular signal-regulated kinase (Erk) signaling.
Innovation: MtFt attenuated Aβ(25-35)-induced neurotoxicity and reduced oxidative damage through Erk/P38 kinase signaling.
Conclusion: Our results show a protective role of MtFt in AD and suggest that regulation of MtFt expression in neuronal cells may provide a new neuroprotective strategy for AD.