Echinocandins are frontline agents against invasive candidiasis (IC), but predictors for echinocandin therapeutic failure have not been well defined. Mutations in Candida FKS genes, which encode the enzyme targeted by echinocandins, result in elevated MICs and have been linked to therapeutic failures. In this study, echinocandin MICs by broth microdilution and FKS1 and FKS2 mutations among C. glabrata isolates recovered from patients with IC at our center were correlated retrospectively with echinocandin therapeutic responses. Thirty-five patients with candidemia and 4 with intra-abdominal abscesses were included, 92% (36/39) of whom received caspofungin. Twenty-six percent (10) and 74% (29) failed and responded to echinocandin therapy, respectively. Caspofungin, anidulafungin, and micafungin MICs ranged from 0.5 to 8, 0.03 to 1, and 0.015 to 0.5 μg/ml, respectively. FKS mutations were detected in 18% (7/39) of C. glabrata isolates (FKS1, n = 2; FKS2, n = 5). Median caspofungin and anidulafungin MICs were higher for patients who failed therapy (P = 0.04 and 0.006, respectively). By receiver operating characteristic (ROC) analyses, MIC cutoffs that best predicted failure were >0.5 (caspofungin), >0.06 (anidulafungin), and >0.03 μg/ml (micafungin), for which sensitivity/specificity were 60%/86%, 50%/97%, and 40%/90%, respectively. Sensitivity/specificity of an FKS mutation in predicting failure were 60%/97%. By univariate analysis, recent gastrointestinal surgery, prior echinocandin exposure, anidulafungin MIC of >0.06 μg/ml, caspofungin MIC of >0.5 μg/ml, and an FKS mutation were significantly associated with failure. The presence of an FKS mutation was the only independent risk factor by multivariate analysis (P = 0.002). In conclusion, detection of C. glabrata FKS mutations was superior to MICs in predicting echinocandin therapeutic responses among patients with IC.