Purpose: The efficacy of peptide vaccines may be enhanced by stimulating immune cells with multiple peptides derived from distinct tumor-associated antigens. We have evaluated the heteroclitic XBP1-US(184-192) (YISPWILAV), heteroclitic XBP1-SP(367-375) (YLFPQLISV), native CD138(260-268) (GLVGLIFAV), and native CS1(239-247) (SLFVLGLFL) peptides, which have strong HLA-A2 affinity and immunogenicity in combination, for their ability to elicit multiple myeloma antigen-specific responses.
Experimental design: Multipeptide-specific cytotoxic T lymphocytes (MP-CTL) were generated by the stimulation of CD3(+) T lymphocytes from HLA-A2(+) individuals with either autologous mature dendritic cells or T2 cells pulsed with a cocktail of these four peptides.
Results: The peptide cocktail did not compromise tumor antigen-specific activity of CTLs. MP-CTLs displayed increased total, effector memory (CCR7(-)CD45RO(+)), and activated (CD69(+)) CD3(+)CD8(+) T lymphocytes. In addition, MP-CTL showed IFN-γ production, cell proliferation, and cytotoxicity against HLA-A2(+) multiple myeloma cells, including cells of HLA-A2(+) patients with multiple myeloma. Importantly, MP-CTLs showed specific responses in functional assays to each relevant peptide but not to an irrelevant HLA-A2-specific CMV pp65 (NLVPMVATV) peptide.
Conclusions: These results highlight the potential therapeutic application of vaccination with a cocktail of HLA-A2-specific peptides to induce CTLs with a broad spectrum of immune responses against multiple myeloma antigens.
©2012 AACR.