Oxidation state delineation via U L(III)-edge XANES in a series of isostructural uranium coordination complexes

Inorg Chem. 2012 Jul 16;51(14):7940-4. doi: 10.1021/ic3011234. Epub 2012 Jul 5.

Abstract

We present an X-ray absorption near-edge structure (XANES) study of a series of uranium coordination complexes that possess nearly identical first coordination spheres and geometries in a range of oxidation states from U(III) to U(VI). These compounds were obtained through the activation of small molecules, such as ketones, azides, and carbon dioxide, and upon oxidation of a high-valent U(V)≡O to [U(VI)≡O](+). Most of the compounds have been reported previously. All of them are fully characterized and their oxidation states have been confirmed by various spectroscopic methods (SQUID, (1)H NMR, and UV/vis/near-IR). Each uranium complex consists of a triazacyclononane anchor bearing three aryloxide side arms with bulky tert-butyl (t-Bu) or adamantyl (Ad) ortho substituents. All complexes have approximate C(3) symmetry and possess an axial cavity that is either empty (U(III)) or occupied by a seventh ligand, namely, terminal oxygen (U(V) and U(VI)) or an oxygen-containing ligand (U(IV)). The only exception is [(((t-Bu)ArO)(3)tacnU(VI)(O)][SbF(6)], which is the rare case of a complex that shows a strong inverse trans influence. The determined correlation between the uranium oxidation state and the U L(III)-edge XANES absorption in this series includes a single terminal oxo ligand bonded uranium(V,VI), for which data are essentially nonexistent. The correct assignment of the uranium valence in a U(IV)-L(•-) compound (L(•-) = ketyl radical) is shown to be only possible by a comparison to structurally similar compounds.