The current workflow for clinical Fragile X testing is time consuming and labor intensive. Recently developed PCR-based methods simplify workflow, amplify full mutation alleles, and improve sensitivity for detecting low-level mosaicism. We evaluated the performance characteristics and workflow of two methods using commercially available reagents for determining FMR1 mutation status. We also tested each method's ability to detect mosaicism (range, 100% to 1% for males; 50% to 1% for females). One method used reagents from Asuragen (AmplideX FMR1 PCR, research use only). The second method used analyte specific reagents from Abbott Molecular, including FMR1 Primer 1 (for repeat sizing) and FMR1 Primer 2 (for screening of expanded alleles). Each reaction was evaluated for accuracy, precision, correlation with previous results, and workflow. Both methods performed equally well in accuracy and precision studies using NIST standards and previously characterized Coriell samples. Both methods showed 100% concordance with results from a previous consensus study and for previously analyzed patient samples. The Asuragen reagents were able to detect full mutation mosaicism down to 5% and premutation mosaicism to 1%. The Abbott Molecular Primer 2 reagents were able to detect both full mutation and premutation mosaicism down to 25%. Both PCR-based methods for the determination of FMR1 mutation status performed well, with expected results in their final diagnoses, and differed significantly only in their workflow.
Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.