Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca(2+) homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca(2+) spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38±5.68 vs -1.15±4.32 UI/L, P<0.001) and CK (-24.3±99.1±189.3 vs 48.3 UI/L, P=0.01) and a trend to an elevation of isoprostanes (193±408 vs 12±53 pmol/mmol creatinine, P=0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca(2+) sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca(2+) spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca(2+) spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r=0.71, P=0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication.
Copyright © 2012 Elsevier Inc. All rights reserved.