Objective: To determine whether primary or mesh herniorrhaphy reverses abdominal wall atrophy and fibrosis associated with hernia formation.
Background: We previously demonstrated that hernia formation is associated with abdominal wall atrophy and fibrosis after 5 weeks in an animal model.
Methods: A rat model of chronic incisional hernia was used. Groups consisted of uninjured control (UC, n = 8), sham repair (SR, n = 8), unrepaired hernia (UR, n = 8), and 2 repair groups: primary repair (PR, n = 8) or tension-free polypropylene mesh repair (MR, n = 8) hernia repair on postoperative day (POD) 35. All rats were killed on POD 70. Intact abdominal wall strips were cut perpendicular to the wound for tensiometric analysis. Internal oblique muscles were harvested for fiber type and size determination.
Results: No hernia recurrences occurred after PR or MR. Unrepaired abdominal walls significantly demonstrated greater stiffness, increased breaking and tensile strengths, yield load and yield energy, a shift to increased type IIa muscle fibers than SR (15.9% vs 9.13%; P < 0.001), and smaller fiber cross-sectional area (CSA, 1792 vs 2669 μm(2); P < 0.001). PR failed to reverse any mechanical changes but partially restored type IIa fiber (12.9% vs 9.13% SR; P < 0.001 vs 15.9% UR; P < 0.01) and CSA (2354 vs 2669 μm(2) SR; P < 0.001 vs 1792 μm(2) UR; P < 0.001). Mesh-repaired abdominal walls demonstrated a trend toward an intermediate mechanical phenotype but fully restored type IIa muscle fiber (9.19% vs 9.13% SR; P > 0.05 vs 15.9% UR; P < 0.001) and nearly restored CSA (2530 vs 2669 μm(2) SR; P < 0.05 vs 1792 μm(2) UR; P < 0.001).
Conclusions: Mesh herniorrhaphy more completely reverses atrophic abdominal wall changes than primary herniorrhaphy, despite failing to restore normal anatomic muscle position. Techniques for hernia repair and mesh design should take into account abdominal wall muscle length and tension relationships and total abdominal wall compliance.