MT1-MMP is a membrane-tethered enzyme capable of remodeling extracellular matrix. MT1-MMP-deficient mice exhibit systematic defects during development, especially in craniofacial development characterized by retarded calvarial bone formation. Recently, we identified MT1-MMP as a critical positive modulator of FGF signaling during intramembranous ossification. MT1-MMP cleaves ADAM9 to protect FGFR2 from ectodomain shedding. Depletion of ADAM9 in MT1-MMP-deficient mice significantly rescued the calvarial defects via restoring FGF signaling. Interestingly, this regulatory mechanism seems to be highly tissue-specific, as defective FGF2-induced corneal angiogenesis in Mmp14-/- mice could not be rescued by removal of ADAM9. In addition, MT1-MMP also cleaves another ADAM family member, ADAM15. Our current findings not only present a novel regulatory mechanism for FGF signaling but also reveal a functional crosstalk between MMP and ADAM families. Better understanding of the interplay between ADAMs and MT1-MMP and its consequences for signaling pathways will provide new insights into therapeutic approaches for the management of developmental disorders and various diseases, such as cancer.