Chick embryos derive nutrients from the yolk during incubation and transition to intestinal absorption of nutrients posthatch. The uptake of nutrients is mediated by a variety of membrane-bound transporter proteins. The objective of this study was to determine the expression profiles of nutrient transporters and digestive enzymes during incubation in the yolk sac membrane (YSM) and embryonic intestine of egg-laying (Leghorn) and meat-producing (Cobb) chickens derived from 22 to 30 wk (young) and 45 to 50 wk (old) breeder flocks. Transporters examined included the peptide transporter PepT1, the glutamate/aspartate (EAAT3), cationic (CAT-1) and neutral (B0AT) amino acid transporters, and the fructose (GLUT5) and glucose (SGLT1) transporters. Digestive enzymes included aminopeptidase N (APN) and sucrase-isomaltase (SI). Expression of these genes was assessed by real-time PCR using the absolute quantification method in YSM at embryonic day (E) 11, 13, 15, 17, 19, 20, and 21 and intestine at E15, 17, 19, 20, and 21. The PepT1 and APN gene expression in the YSM increased until E15 and then decreased until E21, whereas expression in the intestine increased from E15 to E21. The B0AT showed a similar pattern, with greatest expression in the YSM occurring at E17/E19. The CAT1 and GLUT5 genes showed decreased expression in the YSM and increased expression in the intestine until E17/E19 and then a decrease until E21. Expression of SGLT1 and EAAT3 showed increased gene expression over time in both the intestine and YSM. Expression of SI showed little to no gene expression in the YSM, whereas the intestine exhibited consistently high levels of gene expression. In YSM and intestine, SI expression was greater in Leghorn than Cobb, whereas CAT1 and GLUT5 expression was greater in Cobb than Leghorn. Expression of the APN, CAT1, and SI genes was greater in embryos from young flocks than old flocks in YSM and intestine. These results demonstrate that the YSM expresses many of the digestive enzymes and nutrient transporters typically associated with the intestine and that these genes show tissue- and development-specific patterns of expression.