Objective: We observed differences in atherosclerosis susceptibility in mouse inbred strains over the years as the health status of our animal rooms increased. Therefore, we investigated the effect of animal room health status on atherosclerosis susceptibility in different strains. As these data can also be used for genome-wide association mapping, we performed a mapping study and compared our results with previously found quantitative trait loci for atherosclerosis in mouse and humans.
Methods and results: Males and females from 48 inbred strains were housed in 2 animal rooms with different health status and given an atherogenic diet. We compared atherosclerosis susceptibility between animal rooms and between sexes and found that susceptibility is dependent on both health status and sex. Subsequently, the data were used for associations with loci on the mouse genome using 63 222 single nucleotide polymorphism. Three loci in males and 4 loci in females were identified using the data from the low-health status room. No significant associations were identified using the data from the high-health status room.
Conclusions: Health status influences susceptibility to atherosclerosis and suggests that microbiological pressure plays an important role in the development of atherosclerosis in many strains. As we were only able to map susceptibility loci using the data from the lower health status room, we argue that susceptibility under these conditions is determined by a few key loci, whereas in the higher health status room different mechanisms might play a role in the differences in atherosclerosis susceptibility between strains and we did not have enough power to map the loci that are involved.