Ultraviolet resonance Raman spectra of bacteriorhodopsin have been obtained using 229 nm excitation from a hydrogen-shifted neodymium yttrium aluminum garnet (Nd: YAG) laser. High signal-to-noise spectra are observed exhibiting vibrational bands at 762, 877, 1011, 1175, 1356, 1552 and 1617 cm-1 which are assigned to scattering from tryptophan and tyrosine side chains. This demonstrates the feasibility of using UV resonance Raman spectroscopy to monitor aromatic amino acid structural changes during the bacteriorhodopsin photocycle.