Background: In spring 2009, a new swine-origin influenza A (H1N1) virus emerged in Mexico. During the following weeks the virus spread worldwide, prompting the World Health Organization to declare the first influenza pandemic of the 21st century. Sustained human-to-human transmission and severe disease progression observed in some patients urged public health authorities to respond rapidly to the disease outbreak and vaccine manufacturers to develop pandemic influenza vaccines for mass distribution. With the onset of the pandemic we began to explore the potential of academic/industrial collaboration to accelerate the production of vaccines during an outbreak of an emerging virus by combining the use of an academic BSL-4 laboratory with the expertise of a commercial vaccine manufacturer.
Methods and results: To obtain virus seed stocks used for the production of a vaccine to combat the pandemic H1N1 2009 influenza virus (H1N1pdm), we followed various strategies: (i) optimization of cell culture conditions for growth of wild-type H1N1pdm isolates; (ii) classical reassortment of H1N1pdm and standard influenza vaccine donor strain PR8; and (iii) generation of corresponding reassortant viruses using reverse genetics. To ensure a rapid transition to production, the entire potential seed stock development process was carried out in a certified canine kidney suspension cell line (MDCK 33016-PF) under Good Manufacturing Practice (GMP) conditions.
Conclusions: The outcome of this study indicates that a combination of different experimental strategies is the best way to cope with the need to develop vaccines rapidly in the midst of an emerging pandemic.