Compelling evidence suggests that the glutamatergic system may contribute to the pathophysiology of major depression (MDD). While the D-amino acid oxidase activator (DAOA) gene can affect glutamatergic function, its genetic associations with MDD and abnormal resting-state brain activity have yet to be elucidated. A total of 488 patients with MDD and 480 controls were recruited to examine MDD association for the DAOA gene in a Chinese population, of whom 53 medication-free patients and 46 well-matched controls underwent resting-state functional magnetic resonance imaging for regional homogeneity (ReHo) analysis. The differences in ReHo between genotypes of interest were initially tested by the Student's t test, and the 2 × 2 (genotypes × disease status) ANOVA was then performed to identify the main effects of genotypes, disease status, and their interactions in MDD. Allelic association of the DAOA gene with MDD was observed for rs2391191, rs3918341, and rs778294 and haplotypic association for 2- and 3-SNP haplotypes. Six clusters in the cerebellum, right middle frontal gyrus and left middle temporal gyrus showed genotypic association between altered ReHo and rs2391191. The main effects of rs2391191 genotypes were found in the right culmen and right middle frontal gyrus. The left uvula and left middle temporal gyrus showed a genotypes × disease status interaction. Our results suggest that the DAOA gene may confer genetic risk of MDD. Genotypic effect of rs2391191 and its interaction with disease status may contribute to the altered ReHo in patients with MDD. Glutamatergic modulation may play an important role in alteration of the resting-state brain activities.