Objective: To investigate the relationship between serotonin (5-HT) and epilepsy and the mechanism of learning-memory in pilocarpine (PILO)-induced epileptic rats after 5,7-dihydroxytryptamine (5,7-DHT) microinjection in median raphe nucleus.
Methods: Adult S D rats were randomly divided into 3 groups: PILO group, PILO+ 5,7-DHT group, vehicle control group; PILO group was divided into two groups by status epilepticus (SE): PILO + SE group and PILO - SE group. The rats' seizures and cortex electroencephalography (EEG) were observed by video EEG. The rats' spatial learning-memory was evaluated by Morris water maze. Finally, serotonergic neuron in raphe nuclei was observed by immunohistochemistry.
Results: After treatment of 5,7-DHT (PILO + 5,7-DHT group), the success rate, the mortality and the frequency of chronic spontaneous seizures in pilocarpine-induced epilepsy model were all improved. Compared with the control group, the number of serotonergic neuron in raphe nuclei was decrease in PILO + SE group (P < 0.05). Moreover, it's extremely decrease in PILO + 5,7-DHT group (P < 0.01). Compared with control group, the mean escape latency was prolonged, the times of crossing target was decreased and the retention time in target zone was shortened in PILO + SE group (P < 0.05), but there was no significant difference between PILO + SE group and PILO + 5,7-DHT group.
Conclusion: Depletion of serotonin may facility the rats' epileptic seizures, but we could not interpret which may cause epileptic rats' cognitive deficit.