Were equatorial regions less affected by the 2009 influenza pandemic? The Brazilian experience

PLoS One. 2012;7(8):e41918. doi: 10.1371/journal.pone.0041918. Epub 2012 Aug 1.

Abstract

Although it is in the Tropics where nearly half of the world population lives and infectious disease burden is highest, little is known about the impact of influenza pandemics in this area. We investigated the mortality impact of the 2009 influenza pandemic relative to mortality rates from various outcomes in pre-pandemic years throughout a wide range of latitudes encompassing the entire tropical, and part of the subtropical, zone of the Southern Hemisphere (+5(°)N to -35(°)S) by focusing on a country with relatively uniform health care, disease surveillance, immunization and mitigation policies: Brazil. To this end, we analyzed laboratory-confirmed deaths and vital statistics mortality beyond pre-pandemic levels for each Brazilian state. Pneumonia, influenza and respiratory mortality were significantly higher during the pandemic, affecting predominantly adults aged 25 to 65 years. Overall, there were 2,273 and 2,787 additional P&I- and respiratory deaths during the pandemic, corresponding to a 5.2% and 2.7% increase, respectively, over average pre-pandemic annual mortality. However, there was a marked spatial structure in mortality that was independent of socio-demographic indicators and inversely related with income: mortality was progressively lower towards equatorial regions, where low or no difference from pre-pandemic mortality levels was identified. Additionally, the onset of pandemic-associated mortality was progressively delayed in equatorial states. Unexpectedly, there was no additional mortality from circulatory causes. Comparing disease burden reliably across regions is critical in those areas marked by competing health priorities and limited resources. Our results suggest, however, that tropical regions of the Southern Hemisphere may have been disproportionally less affected by the pandemic, and that climate may have played a key role in this regard. These findings have a direct bearing on global estimates of pandemic burden and the assessment of the role of immunological, socioeconomic and environmental drivers of the transmissibility and severity of this pandemic.

Publication types

  • Historical Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Aged
  • Brazil / epidemiology
  • Female
  • History, 21st Century
  • Humans
  • Immunization
  • Influenza, Human / history
  • Influenza, Human / mortality*
  • Influenza, Human / prevention & control
  • Influenza, Human / therapy
  • Middle Aged
  • Models, Biological*
  • Pandemics*
  • Pneumonia / history
  • Pneumonia / mortality
  • Pneumonia / prevention & control
  • Pneumonia / therapy
  • Respiratory Distress Syndrome / history
  • Respiratory Distress Syndrome / mortality
  • Respiratory Distress Syndrome / prevention & control
  • Respiratory Distress Syndrome / therapy
  • Tropical Climate*

Grants and funding

This work was supported by the research program of the Fogarty International Center (National Institutes of Health) and the International Influenza Unit, Office of Global Affairs, United States Department of Health and Human Services. Funding support for Lone Simonsen came from the Research and Policy for Infectious Disease Dynamics program, jointly supported by the Fogarty International Center (National Institutes of Health) and the Department of Homeland Security Science and Technology Directorate (United States of America). FEAM was supported by Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (Brazil). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.