Context: Animal data suggest that oxytocin is a satiety hormone. We have demonstrated that anorexia nervosa (anorexia), a disorder characterized by food restriction, low weight, and hypoleptinemia, is associated with decreased nocturnal oxytocin secretion. We have also reported functional magnetic resonance imaging (fMRI) hypoactivation in anorexia in brain regions involved in food motivation. The relationships between oxytocin, food-motivation neurocircuitry, and disordered eating psychopathology have not been investigated in humans.
Objective: The objective of the study was to determine whether the oxytocin response to feeding in anorexia differs from healthy women and to establish the relationship between oxytocin secretion and disordered eating psychopathology and food-motivation neurocircuitry.
Design: This was a cross-sectional study.
Setting: The study was conducted at a clinical research center.
Participants: Participants included 35 women: 13 anorexia (AN), nine weight-recovered anorexia (ANWR), and 13 healthy controls (HC).
Measures: Peripheral oxytocin and leptin levels were measured fasting and 30, 60, and 120 min after a standardized mixed meal. The Eating Disorder Examination-Questionnaire was used to assess disordered eating psychopathology. fMRI was performed during visual processing of food and nonfood stimuli to measure brain activation before and after the meal.
Results: Mean oxytocin levels were higher in AN than HC at 60 and 120 min and lower in ANWR than HC at 0, 30, and 120 min and AN at all time points. Mean oxytocin area under the curve (AUC) was highest in AN, intermediate in HC, and lowest in ANWR. Mean leptin levels at all time points and AUC were lower in AN than HC and ANWR. Oxytocin AUC was associated with leptin AUC in ANWR and HC but not in AN. Oxytocin AUC was associated with the severity of disordered eating psychopathology in AN and ANWR, independent of leptin secretion, and was associated with between-group variance in fMRI activation in food motivation brain regions, including the hypothalamus, amygdala, hippocampus, orbitofrontal cortex, and insula.
Conclusions: Oxytocin may be involved in the pathophysiology of anorexia.