Techniques for deriving confidence metrics for the reliability of automatically assigned elemental formulas in complex spectra, from high-resolution mass spectrometers, are described. These metrics can help an analyst to place an appropriate degree of trust in the results obtained from automated spectral analysis of, for example, natural organic materials. To provide these metrics of confidence, common mass spectrometric tests for reliability of peak assignment (mass accuracy/error, relative ion abundance, and rings-plus-double-bonds equivalence) are combined with novel confidence metrics based on the interconnectivity and consistency of a mass difference or mass defect based peak inference network and on the confidence of the initial library matches. These are shown to provide improved peak assignment confidence over manual or simple automatic assignment methods.