A self-assembly phase diagram from amphiphilic perylene diimides

Chemistry. 2012 Sep 24;18(39):12305-13. doi: 10.1002/chem.201201352. Epub 2012 Aug 13.

Abstract

Supramolecular forces govern self-assembly and further determine the final morphologies of self-assemblies. However, how they control the morphology remains hitherto largely unknown. In this paper, we have discovered that the self-assembled nanostructures of rigid organic semiconductor chromophores can be finely controlled by the secondary forces by fine-tuning the surrounding environments. In particular, we used water/methanol/hydrochloric acid to tune the environment and observed five different phases that resulted from versatile molecular self-assemblies. The representative self-assembled nanostructures were nanotapes, nanoparticles and their 1D assemblies, rigid microplates, soft nanoplates, and hollow nanospheres and their 1D assemblies, respectively. The specific nanostructure formation is governed by the water fraction, R(w), and the concentration of hydrochloric acid, [HCl]. For instance, nanotapes formed at low [HCl] and R(w) values, whereas hollow nanospheres formed when either the HCl concentration is high, or the water fraction is low, or both. The significance of this paper is that it provides a useful phase diagram by using R(w) and [HCl] as two variables. Such a self-assembly phase diagram maps out the fine control that the secondary forces have on the self-assembled morphology, and thus allows one to guide the formation toward a desired nanostructure self-assembled from rigid organic semiconductor chromophores by simply adjusting the two key parameters of R(w) and [HCl].