In this report, we present a hybrid structure involving a small quantity of Co element uniformly deposited on porous SnO(2) spheres as stable and high capacity anode materials for lithium-ion batteries. Specifically, Co element deposited on SnO(2) nanomaterials exhibited an exceptional reversible capacity of 810 mA h g(-1) after 50 cycles which is higher than the pure SnO(2) electrode. Based on the experiments results, a possible mechanism for the change of this structure during lithium ion insertion/extraction was proposed. The minute quantity of Co element uniformly deposited on SnO(2) spherical structure could prevent Sn aggregation during charging-discharging, and high porosity of the spherical structure allowed the volume expansion during lithium ion alloying/dealloying. The SnO(2) deposited with small quantities of Co element as electrode facilitated improved performance of lithium ion batteries with higher energy densities.